Recurrent neural network for dynamic portfolio selection

نویسندگان

  • Chi-Ming Lin
  • Jih-Jeng Huang
  • Mitsuo Gen
  • Gwo-Hshiung Tzeng
چکیده

In this paper, the dynamic portfolio selection problem is considered. The Elman network is first designed to simulate the dynamic security behavior. Then, the dynamic covariance matrix is estimated by the cross-covariance matrices. Finally, the dynamic portfolio selection model is formulated. In addition, a numerical example is used to demonstrate the proposedmethod and compare with the vector autoregression (VAR)model. On the basis of the numerical example, we can conclude that the proposed method outperform to the VAR model and provide the accurate dynamic portfolio selection. 2005 Elsevier Inc. All rights reserved. 0096-3003/$ see front matter 2005 Elsevier Inc. All rights reserved. doi:10.1016/j.amc.2005.08.031 * Corresponding author. Address: Institute of Management of Technology, National Chiao Tung University, 1001 Ta-Hsuch Road, Hsinchu 300, Taiwan, ROC. E-mail address: [email protected] (G.-H. Tzeng). 1140 C.-M. Lin et al. / Appl. Math. Comput. 175 (2006) 1139–1146

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Solving Linear Semi-Infinite Programming Problems Using Recurrent Neural Networks

‎Linear semi-infinite programming problem is an important class of optimization problems which deals with infinite constraints‎. ‎In this paper‎, ‎to solve this problem‎, ‎we combine a discretization method and a neural network method‎. ‎By a simple discretization of the infinite constraints,we convert the linear semi-infinite programming problem into linear programming problem‎. ‎Then‎, ‎we use...

متن کامل

Selection of orthogonal investment portfolio using Evolino RNN trading model

Investing in financial market require the reliable predicting of expecting returns, assessment of risk and reliability. Principle of portfolio orthogonality was using to reduce the risk of the investment. An artificial intelligence system may reveal new opportunities for using this principle. Prediction of recurrent neural networks ensemble is stochastically informative distribution, which is h...

متن کامل

ارائه الگوریتم هوشمند ترکیبی بر پایه مدل فازی میانگین - واریانس- چولگی برای انتخاب پرتفولیو

The most important problem for investors, at the beginning stages of their works, is the way of assigning their investment to one or more different investment alternatives in such a way that with the least possible risk the maximum return become obtainable. In the economic literature this is known as the problem of portfolio selection. This article tries to introduce an efficient way for suppor...

متن کامل

A one-layer recurrent neural network for constrained pseudoconvex optimization and its application for dynamic portfolio optimization

In this paper, a one-layer recurrent neural network is proposed for solving pseudoconvex optimization problems subject to linear equality and bound constraints. Compared with the existing neural networks for optimization (e.g., the projection neural networks), the proposed neural network is capable of solving more general pseudoconvex optimization problems with equality and bound constraints. M...

متن کامل

A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem

Financial portfolio management is the process of constant redistribution of a fund into different financial products. This paper presents a financial-model-free Reinforcement Learning framework to provide a deep machine learning solution to the portfolio management problem. The framework consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied Mathematics and Computation

دوره 175  شماره 

صفحات  -

تاریخ انتشار 2006